4 MICROSCOPIC ANALYSIS OF EXCHANGE ...

can be illustrated from the correlation functions
calculated by Carboni and Richards.? These
authors have performed numerical calculations in
the case of linear exchange chains. Indeed, the
spin motion is only due to the exchange Hamil-
tonian E. But for the present purpose, in the
high-frequency range (w> w,), their results may
be regarded as being still valid because D° only
affects the low-frequency range. Figure 2 shows
the sum § £(i, 0; w) restored from the frequency
Fourier transform of the first four cross-corre-
lation functions (i=—4--- +4) (Fig. 4 of Ref. 2)
and the self-correlation function f(0, 0; w) (Fig. 5
of Ref. 2). Their contributions are equal and op-
posite. Therefore, the other cross-correlation
functions must have a negligible influence.

In liquids, the motion Hamiltonian M of the atoms
or molecules is defined by coordinates which are
different from those of the spins. Thus, in the
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case of an individual spin, a commutation rule
equivalent to (2) is still valid:

[s¥, M]=0

Therefore, the self-correlation spectrum f(0, 0; w)
is narrowed in the same way as F(w), and in the
case of an extreme narrowing the contribution of
the cross correlation becomes quite negligible.

In conclusion, the macroscopically identical
behavior of the paramagnetic resonance line,
under the influence of either exchange or motion,
masks two quite distinct phenomena. In solids
with exchange interactions the line shape is due
to the correlations of one spin with all the others.
On the contrary, in liquids the line shape comes
from the self-correlation of one spin: The motion
completely “decorrelates” the spins amongst
themselves.

'R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888
(1954).

’F. Carboni and P. Richards, Phys. Rev. 177, 889
(1969).

PHYSICAL REVIEW B

VOLUME 4, NUMBER 11

1 DECEMBER 1971

Paramagnetic Spin-Lattice Relaxation via the Anharmonic Raman Process*

R. Hernandezf

and M. B. Walker

Department of Physics, University of Tovonto, Toronto 181, Ontario, Canada
(Received 15 July 1971)

The anharmonic Raman process, which was shown by Van Kranendonk and Walker to be im-
portant in the case of nuclear quadrupolar relaxation, is shown here to be of sufficient magni-
tude to explain the Raman relaxation rates of the paramagnetic ions Ccr® and Ni* in MgO.
This new relaxation process involves the anharmonic three-phonon interaction.

The theory of the spin-lattice relaxation of para-
magnetic ions in insulating crystals has recently
been reviewed by Stevens ! and by Abragam and
Bleaney.? Many of the more important original pa-
pers on the subject are contained in the book edited
by Manenkov and Orbach.? It is evident from these
articles that a major assumption of previous theor-
ies which has not been seriously questioned up to
the present is that the phanons can be treated in the
harmonic approximation. Recently, however, Van
Kranendonk and Walker * showed that a new relaxa-
tion process, which they called the anharmonic Ra-
man process, and which depends for its existence
on the anharmonic three-phonon coupling, is im-
portant in the theory of nuclear quadrupolar relaxa-
tion. More recently still, two papers ®'® concerned
with the derivation of the rate equations describing
spin-lattice relaxation in anharmonic crystals have
confirmed the existence of the anharmonic Raman

process described by Van Kranendonk and Walker.
There are as yet, however, no estimates of the
magnitudes of the relaxation rates predicted by this
process for paramagnetic ions. The purpose of
this paper is to show that the anharmonic Raman
process predicts relaxation rates having magnitudes
comparable to those observed in the cases of

MgO : Ni%* and MgO: Cr®. The main conclusion is
thus that the anharmonic Raman process deserves
serious consideration as a possible relaxation
mechanism for paramagnetic ions in crystals.

The Feynman diagram corresponding to the an-
harmonic Raman process is shown in Fig. 1(a), and
a somewhat different pictorial view of the same pro-
cess is shown in Fig. 2. An explicit mathematical
description of the anharmonic Raman process will
be given below.

In their analysis of nuclear quadrupolar relaxa-
tion, Van Kranendonk and Walker showed that the
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FIG. 1. Feynman diagrams
describing (a) the anharmonic
Raman process, and (b) the first-
order Raman process. The solid
lines represent spin states and
the dashed lines represent pho-
nons.

anharmonic Raman process gives relaxation rates
having the same temperature and magnetic field
dependence as the well-known first-order Raman
process [Fig. 1(b)], but is faster by approximately
two orders of magnitude. Whereas the relaxation
rates calculated previously on the basis of the first-
order Raman process were far too slow to explain
the observed experimental results in the case of
the alkali halides, the anharmonic Raman process
was shown to give excellent agreement with experi-
ment. More recent work on Cu,O and on R, MX,
compounds by Armstrong and Jeffrey’ has given
further evidence of the importance of the anharmonic
Raman process in nuclear quadrupolar relaxation.

The calculation of the magnitude of the anharmon-
ic Raman process requires a knowledge of the mag-
nitude of the first-order spin-phonon coupling and
of the anharmonic three-phonon coupling. The
three-phonon interaction can be obtained approxi-
mately if the Griineisen constant is known. The
Griineisen constant for MgO has been measured ex-
perimentally, ® as have the magnitudes of the spin-
phonon coupling coefficients *''° of the ions Ni%* and
Cr® in MgO. The spin-lattice relaxation times of
these ions in the Raman region are also known ex-
perimentally. 1''2 The fact that this experimental
information is available is the reason we have chose
the systems MgO : Cr®* and MgO: Ni? for our com-
parison of theory and experiment.

We begin our detailed analysis by describing the
Hamiltonian for the system, which is

H=Hg+Hy+ Va+ VL, + V2 1)

s-ph -

H, is the spin Hamiltonian describing the energy
levels of the paramagnetic ion in the presence of
the static crystal field and external magnetic field;
it has eigenstates ]m) and energy levels €,. H,,
describes the phonons in the harmonic approxima-
tion and has eigenstates Ia) and energy levels E,.
The three-phonon anharmonic interaction is written

V:J:ﬁ”%“ V(pp,p”)ApAp'Ap” (2)
and the first- and second-order spin-phonon inter-
actions are written

VJ-lJn = Z‘pprp (3)
and
VeZm=2 FopAyAy 4)
pp’

R. HERNANDEZ AND M. B. WALKER 4

where A,=a}+a;, a] and a, being the creation and
annihilation operators for phonons in mode p; p
stands for both the quasimomentum and the polar-
ization of the phonon, and p indicates a phonon of
opposite momentum to that of mode p. The quan-
tities fp and f,,,, are operators in spin space with
matrix elements

(n [Fp ") = Frme (B) (5)

and

0| F oy |17V = Frume (£, B7) ®)

The important quantity to know for a study of
spin-lattice relaxation is the probability per unit
time that a spin makes a transition from state m
to state m’. This is given by the formula

27

Wit =~ Z, P, [(m'a" | T pg|ma)|?
a

XO[E+€n—Ep—€,), (7)

where P, is the probability that a system of harmon-
ic phonons in thermal equilibrium has energy E,.
(In writing this expression, the zero-order Ham-
iltonian is taken to be H + H, and the perturbation
causing the transitions is assumed to be V;+ V{1,

+ V&), another possible separation into zero or-
der and perturbing parts is discussed by Van Kran-
endonk and Walker and the method of separation is
shown not to affect the final result.) The 7 matrix
corresponding to the Feynman diagram of Fig. 1(a)
for the anharmonic Raman process is the second-
order perturbation-theory expression

) P

T =V e — L S
meT USNE ot €, Hop-H,

Vs

P
V.
"YSE.ve,-H,-H,

Vilm, (8)

where P indicates that a principal value should be
taken. Hence the expression for the anharmonic
Raman-process transition probability can be written
in the form

27 ,
uvmm,=7 2, n,,(n,,+1)|gm.m(p ,p)i2
pp’

XO(€En+ €p— €pr—€pr), (9)

where the effective matrix element for phonon scat-

FIG. 2. Pictorial view of the an-
harmonic Raman process. The spin
makes a transition from state a to
p  State b emitting the virtual phonon p,;
this virtual phonon then collides with
the incoming phonon p, with which it
combines to form the emitted phonon

ps-
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tering is given by

S € yn
m(p,P)=2P 2,
m m(p yp) ZPP" €20 — (Em_em')a

X V(pp’p”)fm'm(ﬁ”) .

Thus it can be seen that the expression for the
transition probability for the anharmonic Raman
process can be obtained from that for the well-known
first-order Raman process [see Fig. 1(b)] by re-
placing the matrix element f,., (', L) BY S mem(L’, b).
If these two quantities are of comparable magnitude,
their sum f,.pn(p’, )+ & mm(P’, £) should be sub-
stituted into the expression for the transition prob-
ability.

While there are no direct measurements of the
magnitude of f,..- (£, '), it is possible to obtain an
estimate of the magnitude of g, (p, ') from experi-
mental data. What we shall do, therefore, is to
compute the spin-lattice relaxation time by substi-
tuting the experimentally determined g,,,.(p, p’) into
(9); this calculated value of the spin-lattice relaxa-
tion time agrees roughly with the experimentally
measured value, showing that the anharmonic
Raman process should be seriously considered as
an effective relaxation mechanism.

Another possible approach, which would give the
magnitudes of both the first-order and anharmonic
Raman processes, is to calculate the spin-phonon
coupling constants using a point-charge model sim-
ilar to that used by Van Kranendonk and Walker* in
their study of nuclear quadrupolar relaxation. It
is not clear to us, however, how accurately a point-
charge model would describe the spin-phonon cou-
pling in the case of paramagnetic ions, and we
therefore prefer to base our discussion on experi-
mentally determined quantities. It should be men-
tioned here that Ray ef al.'® have estimated the
magnitude of the first-order Raman process for the
Cr® and Ni?* ions in MgO using a point-charge mod-
el to compute the spin-phonon coupling coefficients,
and have achieved good agreement with experiment.

The conventional way of writing V{!), for the iron-
group ions which we will be discussing is

(10)

a _ 5
Vs-nh_ )—
i,

71Gye;, (11)
where Voigt notation is used (i.e., 7,j=1,2,...,86),
e, is the strain tensor, and the ¥,’s are spin opera-
tors defined by

yaB:saSB+SBsa’ CY#B; ;mzsi’ (12)

In Eq. (12), o,B=x,y,z. The G;,’s are called the
spin-phonon coupling coefficients. A detailed dis-
cussion of Eq. (11) and of the method of measuring
the spin-phonon coupling coefficients has been given
in the review of Tucker. 4

A comparison of Egs. (3) and (11) allows us to
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express the quantity fp in terms of the spin-phonon

coupling coefficients G;;; the result is

Fo= 2 ¥iGiskps, s)
i,J
where
Eﬁ;aB:i(h/2N1wwp)Uz(kaepB+ kge o)1 - 26 aB)
(14)

and E, is the polarization vector associated with pho-
nons in mode p. For the case of cubic symmetry,
which is the case in MgO : Ni®* and MgO: Cr*, there
are only two independent spin-phonon coupling co-
efficients and these can be taken to be G,; and Gy.

The approximate expression (see Van Kranendonk

and Walker?)
V(pp'p")=2V8 7o MURE &, £ yu NA(R + Ryt k)

15)
will be used for V(pp’p”). [Note carefully our def-
inition (2) of V(pp’p” ). ] Here v, is the Griineisen
constant and ¢ ,= (fw,/2NMv?)1/2,

The results (13) and (15) allow the transition
probabilities to be evaluated in terms of the known
parameters G,;, G4, and y;. The relaxation rate
can then be evaluated in terms of the transition prob-
abilities using one of two methods. If the impurity
concentration is sufficiently high that the spin-spin
relaxation time is much shorter than the spin-lattice
relaxation time, and if the energy levels of the ion
in a magnetic field are roughly equidistant, the
logical way of proceeding is to assume the existence
of a spin temperature; as is well known, the spin-
lattice relaxation time 7T, is given in this case by
the Hebel-Slichter formula'®

1 17r=
T-—l— :E[’f’—;' u‘mm'(em— em')%% Grzn} )

where the spin levels are assumed to satisfy 3 €,
=0. The other method of proceeding applies in the
case where the concentration of impurities is suffi-
ciently dilute that spin-spin interaction can be ne-
glected; one should then use the rate equations to
analyze the time evolution of the populations of the
spin energy levels; for the case of more than two
energy levels per ion, more than one relaxation

(16)

TABLE I. Values of the spin-phonon coupling coeffi-
cients Gy and G4, for Ni* and Cr* in MgO as measured
by ultrasonic (Ref. 10) and uniaxial stress (Ref. 9) meth-
ods.

Method Ion Gy, (em™) Gy lem™)
Uniaxial Ni 57 36
stress Ccr¥* 0.6 4.2
.24 -
Ultrasonic Ni 3 57 50
Cr** <1.3 6.5
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TABLE II. Theoretically computed values A occurring
in the relation T'{1 =AT" are compared with the experimen-
tally measured values. The results in the Theory 1 and
Theory 2 columns are obtained using the uniaxial stress
and the ultrasonic values of the G,;’s, respectively. The
numbers are A in units of sec™!°K™',

Theory 1  Theory 2 Experiment
A for Ni** 5.6 x1077 8.3 x10"7 8 x1077 (Ref. 11)
A for Cr®* 94 1010 220 x10°1" 8 x10"!1(Ref. 12)

time results. In spite of the profound differences
in principle involved in the above two methods, the
relaxation rates obtained in the two cases do not, in
general, differ greatly in magnitude. We shall use
the former method as it gives a single relaxation
time and is thus simpler to compare with the exper-
imental results, which are expressed in terms of a
single measured relaxation time.

Finally, making use of the results (9), (10), and
(13)-(16), evaluating the sums over phonon momenta
using the Debye approximation, and assuming that
kT is much less than the Debye energy, one finds
for the anharmonic Raman process

1/Ty=AT", 7)

where
_ 6 G362k,
A=1.34x10%2S + 3)(2S 1)—1—”41——5-(MU) 7ot Vo
(18)

and ®, is the Debye temperature. In evaluating
(18), the following data were used: © p= 948 °K;
M=o0a®, where p=3.6gcm™ anda=2.1x10% cm ;
also v= (672371 ¥® pa. The values of G, and
G,44 as measured by both the ultrasonic attenua-
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tion method!® and the uniaxial stress method®

are shown in Table I. Finally, in Table II, the the-
oretically calculated value of A is compared with the
experimentally determined value.

It can be seen from Table II that in the case of
Ni% in MgO, the theoretically calculated anharmonic
Raman relaxation rate is in excellent agreement
with experiment. The predicted relaxation rate for
Cr®* in MgO, on the other hand, is too fast by an
order of magnitude. In attempting to assess the
significance of these results it is necessary to note
the following: (i) Equation (11) is a good approxi-
mation at long wavelengths, but gives only a rough
estimate of the coupling of the spin to short-wave-
length phonons; unfortunately, the interaction be-
tween the spin and short-wavelength phonons enters
the calculation in an important way [see Eq. (10)].
(ii) Equation (15) is also a long-wavelength approx-
imation, and even at long wavelengths it is not exact
(see Van Kranendonk and Walker?). (iii) The use
of the Debye approximation with an average velocity
of sound will also introduce some error. (iv) The
interpretation of the experimental results for Cr3®* is
difficult because the relaxation rate varies as 7"
over only a very narrow range of temperature;
above 50 °K there is an anomalously large increase
in the rate as the temperature is increased; one
possible explanation of this is that the fact that Cr®*
is a lattice defect may affect the phonon modes, 2
Thus, there are several sources of numerical
uncertainty in our calculation. We feel, how-
ever, that our calculation demonstrates that the
anharmonic Raman process has at least the right
order of magnitude to explain experimentally ob-
served relaxation rates, and should be considered
together with the first-order Raman process when
attempting to account for observed relaxation rates
varying as T".
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